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The problem of realizing a one-sided constraint by means of an elastic force is considered. A limit theorem is
established for more general assumptions on the non-potential generalized forces than in [1].

The general theorem on the realization of two-sided constraints by means of elastic forces was proposed by
Courant and proved in [2]. An analogous theorem for one-sided constraints was stated in [1].

1. INITIAL EQUATIONS

Let a natural mechanical system be given in R" = {r}, subject to an ideal one-sided holonomic constraint
defining a half-space M in R" with boundary oM of dimensions g = n — 1. Let E(r, r') be the kinetic energy of the
system without constraints and let F(r, r') be the generalized active force. In a neighbourhood of any point on the
manifold dM one can introduce coordinates g € R and r € R™ such that M is defined by the inequality ¢ = 0
(and oM by g = 0) and the quadratic form E does not contain the product of x' and ¢'. Therefore, henceforth we
shall assume for simplicity that such coordinates are global, i.e. g is the first and x the remaining n — 1 components
of r.

Then

E(r,r)=T(x, x) + 12qA()q + Olql), A()>0 (L1)
The equations of motion have the form
(Elary —dElar=F +R, q=0 (1.2)

where R is the reaction of the constraint. The system moves under the constraint if ¢ = 0 during the motion.
Consider the realization of a one-sided constraint by means of a force with potential NW, where N is a large
positive parameter and

W=1/2¢B(x)q + O(gP) for ¢<0;, W=0 for ¢=0 (1.3)

Henceforth we shall assume for simplicity that B(x) is the same as the corresponding coefficient in the quadratic
form E(r, r'), i.e. B(x) = A(x). The equations of motion of the system without constraints have the form

(OE/ary — BEIdr = F — NaW/ar (1.4)

2. REALIZATION OF THE MOTION OF THE SYSTEM WITH THE CONSTRAINT

Let r(¢) (0 <t < 1) be the motion of the system with a one-sided constraint given by (1.2), and kinetic energy
E of the form (1.1), R..(¢) being the reaction. Suppose that the following conditions are satisfied: the trajectory of
motion belongs to dM, i.e. 4..(f) = 0 and R.(r) > 0 for 0 < ¢ < 1, and W has the form (1.3).

Let rp(t) be the motion (1.4) of the system with no constraint, given the initial conditions 7,{0) = r..(0) and r(0)
= r.(0).

Theorem 1. For any sufficiently large N the motion is defined for 0 < ¢ <t and
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() =ra () +ONTY,  ry(6) = (1) + O(N") @.1)
Remark. The estimate (2.1) can be refined

Ky () =X (D +ON'Y, gy (1) = (1) + O(N~2) 22)

3. AUXILIARY PROPOSITIONS

Proposition 1. Consider the initial conditions for (1.2) in a compact set G in the phase space R”. Any solution
r(t) such that r(0), and r'(0) belong to G (with g'(0), g4 = 0) will then move away from the initial conditions by
no more than DN 2 during the time interval At < tN"Y2if N is sufficiently large. Moreover

D=Ct+O(N™%), C=const=0 (3.1)

Proposition 2. Let the initial conditions for (1.4) belong to G with QN 2 < g;3(0) < 0 and g(0) = 0. Then
for sufficiently large N

lxy ~ X0l DN"!, Iy —gul< DN, Igy —qul< DN% (.2)

as long as gy < 0 where r.,, 7, is the solution of (1.2) with initial conditions 7..(0) = ry(0), x..(0) = xx(0) and
9-(0) = 0.

Proposition 2 is a direct consequence of a theorem in [3], according to which (2.1) and (2.2) are satisfied in the
case of the realization of an ideal two-sided holonomic constraint with the aid of a force with potential NW (W(r)
reaches a minimum on the constraint manifold). The estimates (2.2) remain valid if the initial condition g..(0) is
replaced by O(N '), which follows from [3].

4. PROOF OF THEOREM 1

In the phase space R? we consider a domain G which is a neighbourhood of the solution r,,, ... Let F, be the
projection of the generalized force F onto the direction of ¢. Then

-m=F,+dElag=-M, M>m>0 4.1

inG.
The kinetic energy E(r, ') has the form (1.1) with a < A(x) < A4; and W(r) has the form (1.3). The equality
(BENGY ~ qA(X) — (BA(x)/ax)x'q = O(q) + O(q) (4.2)
holds and the O(-) functions on the right-hand side are uniformly bounded in G.

Consider the motion of the free system. Since gy(0) = gap(0) = 0 and g5(0) < 0, it is seen from (4.1) that g,{0)
becomes negative at the begirning of the motion and the estimates (2.1) hold. Suppose that the trajectory of the
system lies in the half-space ¢ > 0, i.e. gy is equal to zero and gy is positive at a certain instant ;. We call this a
“jump”. Then, by (2.1)

Gl )SDN, |xy (i)~ xa(t)| DN, i (ty) - xu (tg)] < DN

1t can be shown that the time during which the system moves “above” the constraint is bounded. Indeed, since
there is a time s, greater than £g, such that gy{(s) = 0, we have

s
gn{s)=gn{to) + f gn(B)dE
o
It follows that

y -%
{ qn(E)dE=-2DN" /2
g
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gy =[F, + 3E/dq - (3A/ax)x'q y + Olgy) + O(g ;)VAX)
This means that |g ()] < m/(24) for sufficiently large N. Therefore
s—1,<S/2, S=8DA/(mN%) (43)
By analogy, it can be shown that if ¢, is a time such that gy(t;) = 0 and gj{t,) < 0, then
Hh-s<§p2 (4.4)
Since |gy(f)| < 2M/a for ty < t <t,, then at least
Igp(nt < MS/(2a) (4.5)

The difference |g,{fo)| ~ |g;{t1}| can be estimated as follows:
s n
Igi (o) + g (t)l= [ qn (E)IE - [ g (§)dE
fo s
@) >0, qpr)<0)
Inequality (4.3) implies that a constant C exists such that
lgpd <= I(Fg + 0E/og)/A()t + Clg 3}
since |((ad/ax)x — O(1))/A(x)] is a function uniformly bounded in G.

For positive values of ¢ the motion of the free system can be described by the same equations as the motion of
the system with one-sided constraint. It follows that the solution shifts by no more than N during a time S,
where k is proportional to D within O(N"'?) (see (3.1)). As has been demonstrated, (4.5) holds. Therefore N
changes by no more than QN2 Then

gk (to) + g (1< SON~% = ,DN""!
‘We will now consider entering the region “under the constraint”
qn(1) =0, gy(ty) --D,N“%. D, <2D
Then

9E

s 9A
gy + Ngy = A(x) F + aq o ——x'qy +0(qy)+0(qy) (4.6)

By (3.2), there is a positive constant X such that
lanIS KN, Iny—r < KN, ey - xoi< KN

After a time ¢ < 2nN"'2 the right-hand side of (4.6) changes by no more than Q,N~'2 It follows that

- OE
~=—Ngy+F,QN%, F (F )
45 4y + Iy 1 { Rl A %7

and gy can be given with accuracy up to e = QN

D,
QN:E'-TV'SH'((N%(‘ f;))— COS( N%(t t))+ fy .7
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The right-hand side of (4.7) is equal to zero when

2D Ry
T, 52

t=ty, fmily; 1 =+ N % aresin
+ Ry

Consequently, gy = 0 for ¢t = £, and ¢ = ¢, & S/N, and the upper estimate for § is independent of D, (as D,
increases {J; remains unchanged, and so S decreases).
It follows that Jg(t;) + gx(t2)] < CNL
At the pext “jump”
Igyl<2DN"% (48)
The whole of the preceding discussion therefore holds at least as long as (C,D*N™! + C,N")K < DN (K is the
number of “jumps”).

Let Af be the time of a “jump”. Then K = Ty/At < T,N""2/(C,D), where T; is the time interval during which
(4.8) is satisfied

Ty = CD(CyD? + Cy)
At ¢ = Ty we have |¢'(#)] < 3DN2 and the whole discussion can be repeated with D replaced by 3%2D. The

time interval 7, during which gi(r) < 3DN " will then be longer than C;(2D)(C,(2D)* + C,).
Let T, be a time interval such that

(n-DDN"% < gy (1) <nDN"%.
Thenthesum Ty + ...+ T,canbemade alarge asrequired: Ty + ... + Ty ST < Ty + ... + T, It follows
thatfor0ssr<nt

an ()= QINT"), gu(t)=O(N %),

Now, it can be shown that

X0 = 2:(5) + O, x50 = x:(0) + ON-Y) (4.9

Lety = JE/dx". Then
Xn = 3E/8y, yu=-3Ejdx + F(x) {4.10)

(since the constraint is ideal, the project of the reaction R onto any of the x directions is equal to zero). We use
the equations

xy = 9E/3y + O(NY), yj =-3E/dx + F(x) + ON)

Because x, and yy satisfy (4.10) to within O(N '), we obtain (4.9) by the smoothness of all the functions.

5. LEAVING THE CONSTRAINT

Let r.(t) be the motion of the system with one-sided constraint given by (1.2) with kinetic energy E of the form
{1.1), et R., be the reaction of the constraint, andlet0 <t < 1.

Let the system move on the constraint for 0 < ¢ < 1, ie. ¢.{f) = 0 and R, > 0, leaving the constraint at
t = 1, and suppose a positive constant 8 exists such that g, > 0 fort & {1, wx + 8].

Let ry(t) be the motion (1.4) of the system without a constraint, with ¥ of the form (1.3) and ry(0) = r..(0),
r;(0) = r.(0).

Theorem 2. For any sufficiently large N the motion is defined for 0 < ¢ < 1., + 3 and the equalities
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Ty =t +O(N"2), riy =1y +O(N™) 6.1)

are satisfied.

Remarks. Equalities (2.1) and (2.2) are satisfied when system (1.4) moves on the constraint, i.e. when 7 < 1.
When ¢ > 1, +  system (1.2) can reach the surface g = 0 again (either smoothly or with an impact). However,
Theorem 2 does not cover these questions (see [2]).

6. PROOF OF THEOREM 2

In the phase space R? let G be a neighbourhood of the solution r.,, 7;, and let F, be the project of F onto the
direction of g.

Since all the functions are assumed to be muitiply differentiable, there is a time t; such that |F, + dE/dq|
decreases monotonically for ¢ > 1;. By Theorem 1, the motion is defined for ¢ < 1; and the equalities (2.1} and
(2.2) are satisfied.

Suppose that the system turns out to be “above” the constraint for ¢ > 1, with “exit” velocity gy, = DN 1 Then,
since |F, < dE/dq| is monotonically decreasing, the modulus of gy, at the time when gy = 0 and g), < 0 does not
exceed that of gj, at the time when gy = 0 and gy, < 0. In the half-space {g < 0} the coordinate gy has the form
(4.7). Differentiating with respect to ¢ and substituting ¢ = #, + S/N, we obtain

gj(ty) + (01 < 2F(SIN

Therefore, at each “jump” the modulus of g, increases by no more than 2F,S/N. Since the time of a “jump” is
not less than CDN "2, the time interval Ty during which (4.8) is satisfied is longer than D*/(2SFy). It follows that
the motion is defined for 0 < ¢ < 1, and the equalities (2.1) and (2.2) are satisfied. For ¢ < 1., there is a time
to = T + O(N 2 such that ga{t) = 0. Within the time interval [¢, T + 5] the system with one-sided constraint
and the free system are described by the same equations if N is sufficiently large. Therefore, since the estimates
(3.1) hold when ¢ = t (and so ry and ry differ from r,, and, respectively, 7., by O(N /%) at this instant), the theorem
on the continuous dependence of the solution on the initial conditions implies that the estimates (5.1) are satisfied
in this interval. The theorem is proved.
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